搜贴子 搜作者(贴子) 搜作者(回复)
娄底家教网首页 | 
社区首页 > 数学专区 > 浏览
楼主
韦达定理应用
韦达定理是反映一元二次方程根与系数关系的重要定理.纵观近年各省、市的中考(竞赛)试题可以发现,关于涉及此定理的题目屡见不鲜,且条件隐蔽.在证(解)题时,学生往往因未看出题目中所隐含的韦达定理的条件而导致思路闭塞,或解法呆板,过程繁琐冗长.下面举例谈谈韦达定理在解题中的应用,供大家参考.

一、直接应用韦达定理

若已知条件或待证结论中含有a+b和a·b形式的式子,可考虑直接应用韦达定理.

例1 在△ABC中,a、b、c分别是∠A、∠B、∠C的对边,D是AB边上一点,且BC=DC,设AD=d.

求证:

(1)c+d=2bcosA;

(2)c·d=b2-a2.

分析:观察所要证明的结论,自然可联想到韦达定理,从而构造一元二次方程进行证明.



证明:如图,在△ABC和△ADC中,由余弦定理,有

a2=b2+c2-2bccosA;

a2=b2+d2-2bdcosA(CD=BC=a).

∴ c2-2bccosA+b2-a2=0,

d2-2bdcosA+b2-a2=0.

于是,c、d是方程x2-2bxcosA+b2-a2=0的两个根.

由韦达定理,有

c+d=2bcosA,c·d=b2-a2.

例2 已知a+a2-1=0,b+b2-1=0,a≠b,求ab+a+b的值.

分析:显然已知二式具有共同的形式:x2+x-1=0.于是a和b可视为该一元二次方程的两个根.再观察待求式的结构,容易想到直接应用韦达定理求解.

解:由已知可构造一个一元二次方程x2+x-1=0,其二根为a、b.

由韦达定理,得a+b=-1,a·b=-1.

故ab+a+b=-2.

二、先恒等变形,再应用韦达定理

若已知条件或待证结论,经过恒等变形或换元等方法,构造出形如a+b、a·b形式的式子,则可考虑应用韦达定理.

例3 若实数x、y、z满足x=6-y,z2=xy-9.求证:x=y.

证明:将已知二式变形为x+y=6,xy=z2+9.

由韦达定理知x、y是方程u2-6u+(z2+9)=0的两个根.

∵ x、y是实数,∴△=36-4z2-36≥0.

则z2≤0,又∵z为实数,

∴z2=0,即△=0.

于是,方程u2-6u+(z2+9)=0有等根,故x=y.





由已知二式,易知x、y是t2+3t-8=0的两个根,由韦达定理

三、已知一元二次方程两根的关系(或系数关系)求系数关系(或求两根的关系),可考虑用韦达定理

例5 已知方程x2+px+q=0的二根之比为1∶2,方程的判别式的值为1.求p与q之值,解此方程.

解:设x2+px+q=0的两根为a、2a,则由韦达定理,有

a+2a=-P, ①

a·2a=q, ②

P2-4q=1. ③

把①、②代入③,得(-3a)2-4×2a2=1,即9a2-8a2=1,于是a=±1.





∴ 方程为x2-3x+2=0或x2+3x+2=0.

解得x1=1,x2=2,或x1=-1,x2=-2.

例6 设方程x2+px+q=0的两根之差等于方程x2+qx+p=0的两根之差,求证:p=q或p+q=-4.

证明:设方程x2+px+q=0的两根为α、β,x2+qx+P=0的两根为α'、β'.

由题意知α-β=α'-β',

故有α2-2αβ+β2=α'2-2α'β'+β'2.

从而有(α+β)2-4αβ=(α'+β')2-4α'β'.①



把②代入①,有p2-4q=q2-4p,即p2-q2+4p-4q=0,即(p+q)(p-q)+4(p-q)=0,即(p-q)(p+q+4)=0.

故p-q=0或p+q+4=0,

即p=q或p+q=-4.

四、关于两个一元二次方程有公共根的题目,可考虑用韦达定理

例7 m为问值时,方程x2+mx-3=0与方程x2-4x-(m-1)=0有一个公共根?并求出这个公共根.

解:设公共根为α,易知,原方程x2+mx-3=0的两根为α、-m-α;x2-4x-(m-1)=0的两根为α、4-α.

由韦达定理,得α(m+α)=3, ①

α(4-α)=-(m-1). ②

由②得m=1-4α+α2, ③

把③代入①得α3-3α2+α-3=0,

即(α-3)(α2+1)=0.

∵α2+1>0,∴α-3=0即α=3.

把α=3代入③,得m=-2.

故当m=-2时,两个已知方程有一个公共根,这个公共根为3.
作者:尹老师(362538)07-08-15 23:48回复此贴
1楼
哇!精神啊!
作者:陈老师(775904)07-10-10 19:46回复此贴
3楼
我是一个高中数学老师,从我所带的学生来看,有大部分学生对韦达定理都不知道,更不要说了解了,所以我们高中老师给学生复习一遍又一遍,因为高中数学对韦达定理的要求也很高的。
作者:蔡老师(972991)07-10-11 16:04回复此贴
4楼
支持
作者:李老师(957053)07-10-17 12:51回复此贴
共有回复3篇 1
回复内容:
百分·娄底家教网 ©2003-2015